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Abstract

This paper extends the concept of a local energy approach to homogeneous structures which are coupled with an

auxiliary resonant system. The case of a one-dimensional homogeneous master structure (bar, beam) coupled over its

length with a homogeneous auxiliary system composed of resonant arbitrary subsystems is analyzed. It is shown that under

specific assumptions, the vibrational energy density of the coupled master structure can be predicted by solving a simple

energetic boundary value problem that accounts for the mechanical coupling with the auxiliary subsystem. In the context

of vibrational energy propagation, an important question is whether heterogeneity introduced by the auxiliary system

enhances the diffusive behavior of the master structure. Numerical results for various types of auxiliary systems show that

the effective diffusion coefficient of the coupled system is generally increased compared to the uncoupled master structure.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Energy methods are well suited to predict the vibratory behavior of complex structures in the mid- and high-
frequency range. The statistical energy analysis (SEA) is a global energy approach [1,2] that proposes a
description of the vibrational energy in systems consisting of weakly coupled subsystems. In the mid- and
high-frequency range, SEA provides an approximation of the spatially averaged energy of these subsystems.
The application of SEA is subject to several specific assumptions: white noise excitation over a frequency band
Do; equal distribution of the energy over the various modes of a given subsystem in the frequency band Do.
The second condition is guaranteed for simple structure such as homogeneous plates, but not necessarily for
complex structures. One difficulty of SEA is the evaluation of the coupling loss factor between connected
subsystems [1,2], which allows evaluation of energy flow between these subsystems.

On the other hand, prediction of local energy in structures is possible using a thermal conductivity analogy
[3], allowing a diffusion model of vibrational energy in structures. This approach has several advantages: a
diffusion equation is a second-order differential equation which is simpler to solve than a classical
displacement equation, the vibratory behavior of complex structures can therefore be approximated using a
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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thermal finite element solver; moreover, the solution of a diffusion equation is spatially smoother than the
solution of the displacement problem, and under specific conditions provides a spatial average of the exact
energy distribution in structures [4–8]. However, the applicability of a diffusion model for vibrating structures,
as proposed by the thermal analogy, is based on two fundamental assumptions [9]: (1) at any point of the
structure, the potential and the kinetic energy densities are equal; (2) a Fourier law, stating that the structural
intensity is proportional to the gradient of the total energy density is assumed at any point in the structure. In
fact, Le Bot et al. [4] have shown that the exact energetic model for a homogeneous Euler–Bernoulli beam is
strictly different from a diffusion model. Ichchou et al. [10] have correctly derived the conditions required to
formulate a diffusion equation inside a non-loaded homogeneous one-dimensional system (bar or beam).
These conditions are: (1) linear and elastic system; (2) steady state conditions with harmonic excitations at
frequency o; (3) small hysteretic damping loss factor; (4) far from singularities, evanescent waves are
neglected; (5) interference between progressive waves is not taken into account.

Under these assumptions, Langley [11] has shown that a homogeneous two-dimensional system (membrane,
plate), whose displacement field can be decomposed into progressive plane waves, can be modeled as a
diffusion equation according to the thermal analogy. Other authors have shown that the fact of neglecting the
interference between progressive waves is equivalent to performing a spatial average of the energy quantities
over half a wavelength [5–8]. Here again, the systems being studied are homogeneous and free of excitations.

In this paper, we propose to extend the concept of a local energy approach to homogeneous one-
dimensional structures which are coupled with an homogeneous auxiliary system composed of resonant
subsystems. The underlying question is whether heterogeneity introduced by the auxiliary subsystems
enhances the diffusive behavior of the master structure. Diffusion models of a coupled bar and of a coupled
beam are successively derived. In each case, it is shown that the vibrational energy density of the coupled
master structure can be predicted by solving two energetic boundary value problems that account for the
boundary impedance of the auxiliary system. Numerical results are presented for various types of auxiliary
subsystems, especially the case of continuous ‘‘fuzzy’’ subsystems, as described in References [9,12]. In the
context of energy diffusion, the proposed model has the advantage of characterizing the coupled master
structure by a single diffusion coefficient.
2. Energetic model for a bar

The energy behavior of a homogeneous bar (master structure) coupled with a homogeneous and orthotropic
auxiliary system composed of identical and independent elastic subsystems is investigated in this section. Both
the potential energy density and the kinetic energy density are studied, since these two quantities are not
generally equal for a coupled system.
2.1. Energy equation of a bar coupled with an auxiliary system

Let us consider a homogeneous elastic bar (master structure) of length L, as illustrated in Fig. 1, coupled
over its length with an auxiliary system, and set in steady-state vibration by an external harmonic excitation of
fldx

-�2�Audx

A� A�+A(∂�/∂x)dx

dx

l

xx=0 x=L

Fig. 1. Dynamic equilibrium of a bar coupled to an auxiliary system.
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frequency o=2p. The coupling surface between the bar and the auxiliary system is denoted by G. It is assumed
that the auxiliary system satisfies the following properties [9]:
(H1)
 On G, the auxiliary system is composed of a large number of identical and independent subsystems,
uniformly distributed and coupled in a similar manner over G.
(H2)
 The surface G can be discretized into coupling subsurfaces of identical area, such that, on each coupling
subsurface, the master structure is coupled with only one subsystem.
(H3)
 The displacement is constant over each subsurface.

(H4)
 Relative to each subsurface, each subsystem is excited in a same direction.

(H5)
 The surface force and surface displacement are collinear at any coupling point.
Specifically, the above assumptions describe an auxiliary system which is homogeneous and orthotropic on
G, and which is continuously coupled with the master structure. In this context, it has been shown in
References [9,12] that the mechanical action f applied by the bar (master structure) to the auxiliary system can
be modeled on G from a boundary impedance Z:

f ¼ ioZðoÞu on G, (1)

where u represents the longitudinal displacement. The dynamic equilibrium of an element dx of the elastic bar
leads to [13]

A
qs
qx
þ o2rAu� f � l ¼ 0, (2)

where A and r represent the cross-sectional area and the mass density of the bar, respectively, s is the
longitudinal stress which is related to the displacement by s ¼ Equ=qx [13] (E is the complex Young’s
modulus, defined by E ¼ E0ð1þ iZÞ where E0 and Z represent the Young’s modulus and the loss factor of the
bar, respectively). Finally, l represents an arbitrary coupling dimension along the bar width (see Fig. 1), the
coupling surface area being given by jGj ¼ L� l.

Combining Eqs. (1) and (2) results in

q2u
qx2
þ ðaþ ibÞu ¼ 0 in�0; L½, (3)

where

a ¼ Re
o2rA� ioZ � l

EA

� �
; b ¼ Im

o2rA� ioZ � l

EA

� �
. (4)

It is assumed that the solution of Eq. (3) consists of weakly damped progressive waves, provided that: (1) a40,
(2) b 6¼0 and (3) Zeqbar51 where Zeqbar ¼ jb=aj is defined, for a 6¼0, as the equivalent damping of the bar coupled
with the auxiliary system. Indeed, under assumptions (1)–(3), Eq. (3) takes the familiar form

q2u

qx2
þ k

eq
bar

� �2
1� iZeqbar
� �

u ¼ 0, (5)

where k
eq
bar is the wavenumber of the bar coupled with the auxiliary system, k

eq
bar

� �2
¼ a. The establishment of

Eq. (5) is based on the fact that bo0 [9]. The equivalent damping Zeqbar can be formulated from the components
of the boundary impedance Z, which can be deterministically formulated by [9,12]

ioZ ¼ �o2 m0 þ R
� �

þ ioI on G, (6)

where m0+R and I stand for the apparent mass per unit area and the apparent damping per unit area of the
auxiliary system, respectively. Hence, under assumptions (1)–(3), the equivalent damping Zeqbar writes [9]

Zeqbar � Zþ
oI � l

o2 rAþ m0 þ R
� �

� l
� � . (7)

The second term of the right-hand side of Eq. (7) represents the damping introduced by the auxiliary system:
this term depends on the apparent damping I of the auxiliary system and on the mass per unit length
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rAþ ðm0 þ RÞ � l of the bar coupled with the auxiliary system. Moreover, it can be shown that the second
term of the right-hand side of Eq. (7) is always positive [9]: in other words, the auxiliary system always
introduces damping. When Z ¼ 0, it can be verified that Zeqbar � Z. Moreover, I ¼ 0 results in Zeqbar � Z which
means that the damping of the bar is not modified by added point masses. Finally, Zeqbar !1 when a-0: this
behavior will be numerically highlighted in Section 2.3 concerning an auxiliary system composed of linear
oscillators.

In the following, an energy approach instead of displacement Eq. (3) is used to solve the dynamics of the
coupled system. The time-averaged potential energy density U (J/m) and the time-averaged kinetic energy
density T (J/m) of the bar (master structure), integrated over the section of the bar, are given by [9,14]

U ¼
E0A

4

qu

qx

qu

qx
; T ¼

E0Ak2
0

4
u u, (8,9)

where k0 is the wavenumber of the uncoupled bar, k2
0 ¼ o2r/E0, and ‘‘—’’ stands for the complex conjugate.

Using Eqs. (3), (8) and (9), it can be shown that these energy densities are solutions of a single fourth-order
differential equation:

q4F
qx4
þ 4a

q2F
qx2
� 4b2F ¼ 0 in�0; L½. (10)

In this equation, F designates either U or T. It is possible to establish (see Appendix A) that under conditions
(1)–(3) stated previously, solution x 7!F can be expressed as the sum of two functions, x 7!G and x7!H, which
are solutions of the following second-order differential equations:

q2G

qx2
� a Zeqbar
� �2

G ¼ 0 in�0; L½, (11)

@2H

@x2
þ 4aH ¼ 0 in�0; L½, (12)

where Zeqbar ¼ |b/a|. Eqs. (11) and (12) are a diffusion equation and a wave equation, respectively. The solution
of Eq. (11) is analogous to the solution of a heat diffusion equation: it is composed of two exponentially
decaying terms and its spatial variations depend on the dissipation phenomena that occur in the coupled
bar. The solution of Eq. (12) is composed of oscillatory functions that result from the interference between
progressive extensional waves: in the following, it is assumed that this part of the solution can be
neglected [10], which means that Hk k5 Gk k8x. The validity of this hypothesis is discussed in Section 2.3.
Hence, under conditions (1)–(3) and under the assumption that the progressive waves are not taken into
account in the evaluation of the energies, the potential and kinetic energies of the bar are solutions of a
diffusion equation:

q2F
qx2
� gdiff
� �2

F ¼ 0 in�0; L½, (13)

where the diffusion coefficient, namely gdiff(m
�1), is defined from the equivalent damping of the coupled bar

Zeqbar (Eq. (7)):

gdiff ¼ Zeqbar
ffiffiffi
a
p

. (14)

The general solution of Eq. (13) is

F ¼ ae�gdiffx þ begdiff x, (15)

where the spatial variations of the solution x7!F are related to the diffusion coefficient gdiff.

2.2. Energetic boundary conditions

The determination of the constants a and b in Eq. (15) requires energetic boundary conditions of the system,
at x ¼ 0 and L. We assume that conditions (1) a40, (2) b 6¼0 and (3) Zeqbar51 previously stated are satisfied. The
energetic boundary conditions can be formulated in terms of active power. This approach is interesting in
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practice because active power at the end of a bar can easily be measured [15]. Active power P(x,o) is defined
at position x 2 ½0;L� and at frequency o=2p, from the energy flow [9] entering the bar element illustrated
in Fig. 1 [8]:

P ¼
1

2
Re ioEA

qu

qx
ū

� �
. (16)

Considering Eqs. (8) and (9), it can be easily shown (see Reference [9]) that the active power can be expressed
either from the potential energy density, or from the kinetic energy density:

P ¼
o

2bða2 þ b2
Þ
ða� bZÞ

q3U
qx3

�
þð4a2 þ 2b2

� 2abZÞ
qU

qx

�
(17)

or

P ¼
o

2bk2
0

q3T
qx3
þ ð4a� 2bZÞ

qT

qx

� �
. (18)

A rigorous derivation of the energetic boundary conditions requires to consider both exponential and
oscillatory solutions in the potential and kinetic energies: U ¼ Udiff þUwave8x 2�0, L[ where
x7!Udiff and x7!Uwave are solutions of diffusion Eq. (11) and wave Eq. (12), respectively; similarly,
T ¼ Tdiff þ Twave8x 2�0, L[ where x 7!Tdiff and x7!Twave are solutions of diffusion Eq. (11) and wave Eq.
(12), respectively.
2.2.1. Potential energy density boundary value problem

Under the assumptions Zeqbar ¼ jb=aj51 and Z51 (the structural damping of the bar is weak), the active
power given by Eq. (17) can be simplified assuming P ¼ Pdiff þ Pwave, where Pdiff and Pwave are expressed for
a; ba0 (assumptions (1) and (2)) as functions of Udiff and Uwave from Eqs. (11) and (12):

Pdiff �
2o
b

qUdiff

qx
(19)

and

Pwave �
oðb=aþ ZÞ

a

qUwave

qx
. (20)

From Eq. (15), solution G ¼ Udiff of diffusion Eq. (11) can be expressed as G ¼ Gþ þ G�, such that
qG�=qx ¼ �Zeqbar

ffiffiffi
a
p

G�. Similarly, solution H ¼ Uwave of wave Eq. (12) can be expressed from components

H+ and H� propagating in opposite directions ðH ¼ Hþ þH�Þ and such that qH�=qx ¼ �2i
ffiffiffi
a
p

H�. The

corresponding expressions for the active power are P�diff � �2oZ
eq
bar

ffiffiffi
a
p

=b U�diff and P�wave � �2io b=aþ Z
� �

=ffiffiffi
a
p

U�wave, which leads to P�diff
�� �� � 2o=

ffiffiffi
a
p

U�diff
�� �� and P�wave

�� ��p2o Zeqbar þ Z
� �

=
ffiffiffi
a
p

U�wave
�� ��. Assuming that

U�diff
�� �� and U�wave

�� �� are of the same order 8x 2�0, L[ and considering the fact that Zeqbar51 (assumption (3))

and Z� 1, it appears that component P�wave can be neglected compared to component P�diff . Hence P � Pdiff .

The energy flow resulting from the oscillatory solution is therefore neglected. To summarize, the single
quantity being taken into account in the calculation of the active power is the solution of diffusion Eq. (13).
The potential energy density of the system is thus obtained by solving an energetic boundary value problem,

under the conditions (1) a40, (2) b 6¼0, (3) Zeqbar51 and Z51:

q2Uðx;oÞ
qx2

� ðgdiff ðoÞÞ
2Uðx;oÞ ¼ 0; x 2�0; L½;

qUðx;oÞ
qx

				
x¼0

¼
bðoÞ
2o

Pð0;oÞ;
qUðx;oÞ

qx

				
x¼L

¼
bðoÞ
2o

PðL;oÞ:

8>>><
>>>:

(21)
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2.2.2. Kinetic energy density boundary value problem

Similarly, under the assumptions Zeqbar51 and Z51, the active power given by Eq. (18) can be simplified
assuming P ¼ Pdiff þ Pwave, where Pdiff and Pwave are expressed for b 6¼0 (assumption (2)) as a function of Tdiff

and Twave from Eqs. (11) and (12):

Pdiff �
2oa

bk2
0

qTdiff

qx
(22)

and

Pwave ¼
oZ

k2
0

qTwave

qx
. (23)

As previously established for the potential energy density, it can be shown that active power components P�diff
of Pdiff are related to the kinetic energy density components T�diff of Tdiff by P�diff � �2oZ

eq
bara

ffiffiffi
a
p

= bk2
0

� �
T�diff .

Moreover, the active power component P�wave of Pwave are related to T�wave by P�wave � �2ioZ
ffiffiffi
a
p

=k2
0 T�wave.

These results lead to P�diff
�� �� � 2o

ffiffiffi
a
p

=k2
0 T�diff
�� �� and P�wave

�� �� � 2oZ
ffiffiffi
a
p

=k2
0 T�wave
�� ��. Assuming that T�diff

�� �� and
T�wave
�� �� are of the same order 8x 2�0, L[ and considering the fact that Z51, it appears that components P�wave
can be neglected compared to components P�diff . Hence PEPdiff. The kinetic energy density of the bar is thus

obtained by solving the following energetic boundary value problem, under the conditions (1) a40, (2) b 6¼0,

(3) Zeqbar51 and Z51:

q2Tðx;oÞ
qx2

� ðgdiff ðoÞÞ
2Tðx;oÞ ¼ 0; x 2�0; L½;

qTðx;oÞ
qx

				
x¼0

¼
bðoÞk2

0ðoÞ
2oaðoÞ

Pð0;oÞ;
qTðx;oÞ

qx

				
x¼L

¼
bðoÞk2

0ðoÞ
2oaðoÞ

PðL;oÞ:

8>>><
>>>:

(24)

It should be noted that k2
0U ¼ aT8 x 2 ½0; L�. In the case where aak2

0 (bar coupled with an auxiliary

system), we observe that UaT , whereas it is commonly assumed that U ¼ T when interference of progressive
waves is neglected. This may be explained by the fact that in our case the homogeneous bar contains excitation
sources (action of the coupled system), whereas the equality of the potential energy and kinetic energy holds

for a system which does not contain excitation sources [10]. In the case of an uncoupled bar a ¼ k2
0

� �
, the

above energetic boundary value problems are identical to the results found in the literature [10]: in this case,

g2diff � Z2w2=c2g, where cg represents the group velocity of the waves propagating in the bar, cg ¼ ðE0=rÞ
1=2. It

can also be verified that qU=qx ¼ qT=qx � �ðZo=2c2gÞP 8x. The two boundary value problems (21) and (24)

are then equivalent which implies that U ¼ T 8x.
2.3. Numerical results

In the following, the numerical solutions of the diffusion Eq. (13), obtained by solving energetic
boundary value problems (21) and (24), are compared to the exact energy densities, obtained by solving the
exact displacement Eq. (3) and using Eqs. (8) and (9) to derive the exact potential and kinetic energy of the
coupled bar.
2.3.1. A bar coupled with a deterministic auxiliary system

The case under study consists of a free–clamped homogenous bar of length L ¼ 1m, coupled with a
homogenous resonant auxiliary system composed of N ¼ 100 identical linear oscillators uniformly distributed
over the length of the bar. An element of the coupled bar is illustrated in Fig. 2 (the bar is free at x ¼ 0 and
clamped at x ¼ L). The characteristics of the bar are: Young’s modulus E0 ¼ 2.1� 1011 Pa, density
r ¼ 7800 kg/m3, cross-sectional area A ¼ 10�4m2 and loss factor Z ¼ 5� 10�3. The bar is excited at the free
end (x ¼ 0) by a harmonic force of amplitude F ¼ 1000N. The energetic boundary conditions of the system
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are Pð0;oÞ ¼ PinjðoÞ (free end), where Pinj is the injected power calculated from the solution of Eq. (3),

PinjðoÞ ¼ �1
2
Re ioFuð0;oÞ

 �

(25)

and PðL;oÞ ¼ 0 (clamped end).
Each oscillator has mass M ¼ 10�3 kg (the ratio between the mass of the auxiliary system and the mass of

the bar is about 13%), natural frequency O=2p ¼ 5� 104 Hz and loss factor Z0 ¼ 5� 10�2. The boundary
impedance Z of the auxiliary system, which models its action on the bar (master structure) can be formulated
at frequency o /2p [9]:

ioZðoÞ ¼ �o2Roscil þ ioIoscil on G, (26)

where Roscil represents the apparent mass per unit area of the oscillators:

Roscil ¼
M

S

ðO=oÞ2ððO=oÞ2ð1þ Z2Þ � 1Þ

ððO=oÞ2 � 1Þ2 þ Z2ðO=oÞ4
(27)

and Ioscil represents the apparent damping per unit area of the oscillators:

Ioscil ¼
M

S

oðO=oÞ2Z

ððO=oÞ2 � 1Þ2 þ Z2ðO=oÞ4
, (28)

with S ¼ jGj=N.
It is first useful to verify the conditions (1) a40, (2) b 6¼0 and (3) Zeqbarjb=aj51 (a and b are defined by Eq. (4))

required for the validity of energetic boundary value problems (21) and (24): for this purpose, the functions
o7!a=a0 (where a0 ¼ aZðoÞ¼0 � k2

0) and o 7!Zeqbar, which represents the equivalent damping of the coupled bar,
are plotted in the frequency range centered on the natural frequency O/2p of the oscillators (Fig. 3). At 104Hz,
the uncoupled bar contains almost two extensional wavelengths, whereas at 105Hz, the uncoupled bar
contains almost 19 wavelengths.
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Below the natural frequency O/2p, the action of the oscillators on the bar is an added mass and we observe
that a=a0418ooO. Above the natural frequency O/2p, the action of the oscillators is an added stiffness and
a=a0o18o4O. Furthermore, the function o 7!a=a0 takes negative values (hence condition (1) is violated) in
the frequency range [5� 104Hz, 5.4� 104Hz]. On the other hand, the equivalent damping of the coupled bar
Zeqbar ¼ jb=aj is strictly positive in the frequency band under consideration, which implies that condition (2) b 6¼0
is satisfied. Moreover, Zeqbar 7!1 when a/a0 vanishes. Therefore, condition (3) Zeqbar51 is violated close to the
natural frequency O/2p of the oscillators. Far enough from the natural frequency, the equivalent damping of
the coupled bar is approximately equal to the loss factor of the bar, Z ¼ 5� 10�3. Near the natural frequency
O/2p, a strong energy transfer occurs from the bar to the resonant oscillators and the resulting equivalent
damping cannot be considered negligible.

The potential energy and kinetic energy densities at position x ¼ L/2 are presented in Fig. 4 as a function of
frequency. The diffusion coefficient of the bar coupled with the oscillators gdiff (Eq. (14)) is compared to the
diffusion coefficient of the uncoupled bar (Z ¼ 0) in Fig. 5. In Fig. 4, the modal behavior is well captured by
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the diffusion model because the boundary condition in terms of input power is exactly calculated. The
deviation between the solutions of the diffusion equation and the exact energy densities results from the
interference between progressive waves. This deviation decreases close to the resonance of the oscillators, as
both the response of the oscillators and the diffusion coefficient increases: the diffusive behavior of the bar is
enhanced by the energy transfer in the auxiliary system. The appropriateness of the diffusion model to describe
the system dynamics is limited by the following two aspects: (1) far from resonance of the oscillators (small
diffusion coefficient), the interference between progressive waves introduces important differences between
energy-based prediction and exact values; (2) in the frequency range [4.5� 104Hz, 5.7� 104Hz], the diffusion
coefficient and equivalent damping of the system become too large to be compatible with the assumptions of
the diffusion equation model.

To highlight the above results, the spatial variations of the potential and kinetic energies along the bar are
plotted at a frequency closed to the natural frequency of the oscillators, o1=2p ¼ 4:4� 104 Hz (Fig. 6), and at
a frequency far from the natural frequency of the oscillators, o2=2p ¼ 7� 104 Hz (Fig. 7). At these
frequencies, the diffusion coefficients are gdiff ðo1Þ � 4:3m�1 and gdiff ðo2Þ � 1:6m�1, respectively. Close to the
resonance of the auxiliary system (o1=2p ¼ 4:4� 104 Hz), the spatial variation of the energy in the bar is well
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Fig. 6. Spatial variations of (a) potential energy density and (b) kinetic energy density of the homogeneous bar coupled with the linear

oscillators, at frequency o1=2p ¼ 4:4� 104 Hz: ——, exact values; ——, solutions of the diffusion equation.
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Fig. 7. Spatial variations of (a) potential energy density and (b) kinetic energy density of the homogeneous bar coupled with the linear

oscillators, at frequency o1=2p ¼ 7� 104 Hz: ——, exact values; ——, solutions of the diffusion equation.
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approximated by the solutions of the energetic boundary value problem: Fig. 6 shows a small contribution of
the oscillatory contribution, as well as a strong decay of the energy along the bar. On the other hand, far from
the resonance (o2=2p ¼ 7� 104 Hz), the interference between progressive waves introduces strong differences
between exact values and energetic predictions.

It is worth noting that the coupling action of the auxiliary system results in non-equal values of the potential
and kinetic energy densities in general. When ooO, the added inertia introduced by the auxiliary system
results in a smaller kinetic energy density. When o4O, the added stiffness of the auxiliary system results in a
smaller potential energy density.
2.3.2. A bar coupled with a fuzzy auxiliary system

The case investigated here consists of the same bar as before, coupled with a homogenous structural fuzzy
composed of elastic bars whose exact geometrical parameters are assumed unknown and are described
statistically (Fig. 8). A probabilistic model of the boundary impedance for such a fuzzy has been proposed in
References [9,12]. The case of a fuzzy auxiliary system addresses the diffusive behavior in a master structure
coupled with a non-deterministic appendage that has a continuous distribution of natural frequencies. The bar
is excited at the free end (x ¼ 0) by a harmonic force of amplitude F ¼ 1000N.

The fuzzy consists in N ¼ 50 identical subsystems. Each fuzzy subsystem is composed of 1000 clamped–free
bars whose length L and section area S are defined by two continuous independent normalized random
variables [9,12], with mean values L ¼ 0.1m (length) and S ¼ 5� 10�10 m2 (section area) and dispersion
parameters l1 ¼ 0.6 and l2 ¼ 0.4, respectively. The other parameters of the fuzzy are: mass density
r0 ¼ 31,400 kg/m3, Young’s modulus E00 ¼ 2:1� 1011 Pa, loss factor Z0 ¼ 5� 10�2, modal density
nE10�2(rad s�1)�1, fundamental natural frequency O1=2p � 4� 103 Hz. The mean mass of the fuzzy
corresponds approximately to 10% of the mass of the master structure.

The underlying assumptions of the diffusion model, (1) a40, (2) b 6¼0 and (3) Zeqbar ¼ jb=aj51, are first
numerically verified in the case of a fuzzy auxiliary system. At each frequency in the interval [102Hz,
5� 105Hz], the mathematical expectation of the boundary impedance Z is calculated by numerical integration
over [O1/4p, 10

6Hz] [12]. The functions o 7!a=a0 and o 7!Zeqbar are plotted in Fig. 9. The conditions (1)–(3) are
respected. The functions o7!a=a0 and o 7!Zeqbar reach their maximum approximately at the natural frequency
of the fuzzy O1=2p � 4� 103 Hz. Close to O1=2p, the action of the fuzzy on the bar is both inertial and
dissipative. Below O1=2p, the dominant effect is added inertia and above O1=2p, the action of the fuzzy is
mostly to increase the equivalent damping in the bar (with an asymptotic value of the equivalent damping
being that of the bar in high frequency).

The potential energy and kinetic energy densities at position x ¼ L/2 are presented in Fig. 10 as a function
of frequency. The diffusion coefficient of the bar coupled with the fuzzy gdiff (Eq. (14)) is compared to the
diffusion coefficient of the uncoupled bar (Z ¼ 0) in Fig. 11. The diffusion model adequately picks up
the main trends in the frequency dependence of the potential and kinetic energies: the action of the fuzzy on
the bar is apparent in the frequency range [O1=2p, 10

5Hz] starting at the fundamental frequency of the
fuzzy. In this frequency range, the response of the system is considerably damped. This is also apparent
on the diffusion coefficient gdiff (Fig. 11) which is significantly increased in [O1=2p, 10

5Hz]. The fuzzy clearly
enhances the diffusive behavior of the system in the frequency range starting at the fundamental frequency of
the fuzzy.
 x 

 Fuzzy sub-system k 

uk

 Homogeneous bar

Fig. 8. Homogeneous bar coupled to a structural fuzzy.
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Fig. 10. (a) Potential energy density and (b) kinetic energy density of the homogeneous bar coupled with the fuzzy, at position x ¼ L/2:

——, exact values; ——, solutions of the diffusion equation.
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3. Energetic model for a beam

The case of a bending beam is now analyzed: the energy behavior of a homogeneous beam (master
structure) coupled with a homogeneous and orthotropic auxiliary system composed of identical and
independent elastic subsystems is investigated in this section.

3.1. Energy equation of a beam coupled with an auxiliary system

We consider a homogeneous Euler–Bernoulli beam (master structure) of length L, coupled over its length
with a homogeneous and orthotropic auxiliary system. Assumptions (H1)–(H5) of Section 2.1 regarding the
auxiliary system still hold. The disturbance on the coupled system is a transverse external harmonic excitation
of frequency o=2p. Under pure bending assumption, the forces and moments applied to a beam element dx

located at position x are illustrated in Fig. 12.



ARTICLE IN PRESS

102 103 104 105
10-4

10-3

10-2

10-1

100

101

Frequency (Hz)

� d
if

f(
�

) 
(m

-1
)

Fig. 11. Diffusion coefficient of the homogenous bar coupled with the fuzzy (——) and diffusion coefficient of the uncoupled

homogeneous bar (————).

fldx

dx

l

xx=0 x=L

V

V+(∂V/∂x)dx

M M+(∂M/∂x)dx

-�2 �Audx

Fig. 12. Dynamic equilibrium of a beam coupled to an auxiliary system.

J.-M. Mencik, A. Berry / Journal of Sound and Vibration 294 (2006) 894–915 905
The force equilibrium of the beam element is [13]

qV

qx
� o2rAuþ f � l ¼ 0 (29)

and the moment equilibrium condition gives [13]

�V þ
qM

qx
� 0. (30)

Here, u represents the transverse displacement, V is the shearing force, and M is the bending moment, defined
by M ¼ EIq2u=qx2 (EI: complex bending rigidity, E ¼ E0ð1þ iZÞ: complex Young’s modulus, E0: Young’s
modulus and Z: loss factor of the beam). It has been shown in References [9,12] that assumptions (H1)–(H5) of
Section 2.1 allow to write the surface force f applied by the master structure to the auxiliary system as a
function of a boundary impedance Z on the coupling surface (say G),f ¼ ioZu. In Eq. (29), A and r represent
the cross-sectional area and mass density of the beam, respectively, and l represents an arbitrary coupling
dimension along the bar width, the coupling surface area being given by jGj ¼ L� l.

Combining Eqs. (29) and (30) results in

q4u
qx4
� ðaþ ibÞu ¼ 0 in�0; L½, (31)
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where

a ¼ Re
o2rA� ioZ � l

EI

� �
; b ¼ Im

o2rA� ioZ � l

EI

� �
. (32)

Following an approach similar to the case of the bar, it is assumed that the solution of Eq. (31) is composed of
weakly damped progressive and evanescent waves, provided: (1) a40, (2) b 6¼0 and (3) Zeqbeam51 where Zeqbeam ¼
jb=aj is defined, for a 6¼0, as the equivalent damping of the beam coupled with the auxiliary system.
Assumptions (1)–(3) allow to write Eq. (31) in the familiar form

q2u
qx2
� k

eq
beam

� �4
1� iZeqbeam
� �

u ¼ 0, (33)

where k
eq
beam is the equivalent wavenumber of the beam coupled with the auxiliary system, ðkeq

beamÞ
4
¼ a.

According to Eqs. (32) and (4), it appears that the expressions of the equivalent damping for the beam and for
the bar are rigorously similar for auxiliary systems described by the same boundary impedance operator

Zeqbeam ¼ Zeqbar. (34)

In particular, under assumptions (1)–(3), the equivalent damping of the beam Zeqbeam is expressed from Eq. (7).
In the following, an energy approach instead of displacement Eq. (31) is used to solve the dynamics of the

coupled system. The time-averaged potential energy density U (J/m) and the time-averaged kinetic energy
density T (J/m) of the beam (master structure), integrated over the section of the beam [9], are given by [14]

U ¼
E0I

4

q2u

qx2

q2u

qx2
; T ¼

E0Ik4
0

4
uū, (35,36)

where k4
0 ¼ o2rA=E0I is the wavenumber in the uncoupled bar. These energy densities are solutions of two

coupled, eighth-order differential equations (Appendix B):

q8

qx8

U

T

� �
� 4

a 3ða2 þ b2
Þ=k4

0

3k4
0 a

 !
q4

qx4

U

T

� �
þ 4

2a2 þ b2
�2aða2 þ b2

Þ=k4
0

�2ak4
0 2a2 þ b2

 !
U

T

� �
¼

0

0

� �
. (37)

The resolution of such a system was proposed by Le Bot et al. [4] in the case of an uncoupled homogeneous
beam. A similar approach can be applied in the present case: we suppose that the solutions of system (37) are
of the form

Ui

Ti

 !
¼

AiðoÞ

BiðoÞ

 !
eliðoÞx. (38)

Under the conditions (1) a40, (2) b 6¼0 and (3) Zeqbeam ¼ jb=aj51, the 16 eigenvalues fligi¼1;:...16 are given by
(Appendix B):

lif g ¼

ffiffiffi
a4
p

2
Zeqbeam;�

ffiffiffi
a4
p

2
Zeqbeam; i

ffiffiffi
a4
p

2
Zeqbeam;�i

ffiffiffi
a4
p

2
Zeqbeam;

�
2
ffiffiffi
a4
p

;�2
ffiffiffi
a4
p

; 2i
ffiffiffi
a4
p

;�2i
ffiffiffi
a4
p

,

ð1þ iÞ
ffiffiffi
a4
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Zeqbeam

4

q
;�ð1þ iÞ

ffiffiffi
a4
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Zeqbeam

4

q
; ð1þ iÞ

ffiffiffi
a4
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Zeqbeam

4

q
;�ð1þ iÞ

ffiffiffi
a4
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Zeqbeam

4

q
,

ð1� iÞ
ffiffiffi
a4
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Zeqbeam

4

q
;�ð1� iÞ

ffiffiffi
a4
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Zeqbeam

4

q
; ð1� iÞ

ffiffiffi
a4
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Zeqbeam

4

q
;�ð1� iÞ

ffiffiffi
a4
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Zeqbeam

4

q �
. ð39Þ

These solutions are distinct since it is supposed that Zeqbeama0 ðba0Þ. Hence, the potential and kinetic energies
take the general form

U

T

� �
¼
X

i

Ui

Ti

 !
. (40)
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The various eigenvalues can be physically interpreted as follows:
�
 Solutions �iða1=4=2Þ � Zeqbeam are associated to weakly fluctuating energy densities along the structure
(according to the condition Zeqbeam51) which result from the interference between two evanescent waves. In
the high frequency range, such evanescent waves are however confined to the boundaries and excitation
point in the beam. It will be assumed that these waves, and hence the energy density associated to their
interference, are neglected far from the singularities [16].

�
 Solutions �2a1=4;�ð1� iÞa1=4ð1� ZeqbeamÞ

1=4 are associated to strongly fluctuating energy densities
along the structure. The solutions �ð1� iÞa1=4ð1� ZeqbeamÞ

1=4 result from the interference between
progressive and evanescent waves. Similarly, since evanescent waves are confined to the boundaries
and excitation point in the beam, the above solutions will be neglected in terms of energy density along
the beam.

�
 Finally, solutions 72ia1/4 are associated to standing waves which result from the interference between two

progressive waves. Following Ichchou et al. [10] in the case of an uncoupled homogeneous structure, these
solutions can also be neglected. The validity of this assumption will be discussed in Section 3.3.

To summarize, under the assumption that evanescent waves are confined to boundaries and driving point
and that the energy resulting from interference between progressive waves can be neglected, the energy
densities of the structure can be obtained from the remaining two eigenvalues �ða1=4=2ÞZeqbeam; the energy in the
system can be derived from the diffusion equation:

q2F

qx2
� ðgdiff Þ

2F ¼ 0 in�0; L½, (41)

where F designates either U or T, and gdiff stands for the diffusion coefficient (m�1):

gdiff ¼ Zeqbeam
a1=4

2
. (42)

The general solution of Eq. (41) is

F ¼ ae�gdiff x þ begdiff x, (43)

where the spatial variations of the solution x7!F are related to the diffusion coefficient gdiff.
It can be observed that, although the equivalent damping of the beam Zeqbeam is formally identical to the

equivalent damping of the bar Zeqbar, the expressions of the diffusion coefficients for the two structures are
different (see Eqs. (14) and (42)). That means that the energy densities in the two systems do not exhibit the
same spatial variations. This result seems natural if we consider that the equations of diffusion for bar and
beam are derived from strongly different energetic relationships (see Eqs. (10) and (37)).
3.2. Energetic boundary conditions

The determination of the constants a and b in Eq. (43) requires energetic boundary conditions of the system,
at x ¼ 0 and L. Similarly to the case of a bar, the energetic boundary conditions are expressed in terms of
active power in the beam. The assumptions (1) a40, (2) b 6¼0 and (3) Zeqbeam51 previously stated still hold.
Active power P(x,o) is defined at position x 2 ½0;L� and at frequency o /2p as [8]

P ¼ �
1

2
Re ioEI

q3u

qx3
ū

� �
þ

1

2
Re ioEI

q2u
qx2

qu

qx

� �
. (44)

Similarly, reactive power Q(x,o) is defined by [8]

Q ¼ �
1

2
Im ioEI

q3u

qx3
ū

� �
þ

1

2
Im ioEI

q2u

qx2

qu

qx

� �
. (45)
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Appendix C establishes that P and Q can be expressed from the third and seventh derivatives of the energy
densities:

P

Q

 !
¼

o

2k4
0b

3
�a

k4
0ð2� ðb=aÞZÞ að2þ ðb=aÞ2 � ðb=aÞZÞ

k4
0ð2Zþ ðb=aÞÞ að2Zþ ðb=aÞ2Zþ ðb=aÞÞ

0
@

1
A q7

qx7

U

T

 !0
@ þ 4a2

�
k4
0ð8þ 3ðb=aÞ2 � 4ðb=aÞZÞ að8þ 7ðb=aÞ2 � 4ðb=aÞZ� 3ðb=aÞ3ZÞ

k4
0ð8Zþ 3ðb=aÞ2Zþ 4ðb=aÞÞ að8Zþ 7ðb=aÞ2Zþ 4ðb=aÞ þ 3ðb=aÞ3Þ

0
@

1
A q3

qx3

U

T

 !1A. ð46Þ

This expression generalizes the one proposed by Le Bot et al. [4] in the case of an uncoupled homogenous
beam. Considering Eqs. (38), (40) and (46), it is possible to write

P

Q

 !
¼
X

i

Pi

Qi

 !
¼
X16
i¼1

CiðoÞ

DiðoÞ

 !
eliðoÞx. (47)

Following Le Bot et al [4], and provided that evanescent waves do not transmit energy separately [16], the
interference between progressive and evanescent waves can be neglected in the evaluation of the power. This
means that the terms {Pi}i associated to solutions li ¼ �ð1� iÞa1=4ð1� ZeqbeamÞ

1=4
ðl4i � �4aÞ can be neglected in

Eq. (47). Under the conditions Zeqbeam51 and Z51, the remaining term {Pi}i can be evaluated in Eq. (47). For
iA{1,2,3,4}, l4i ¼ ða=16ÞZ

eq
beam

4
, and

Pi

Qi

 !
�

8oa2

k4
0b3

2k4
0 2a

k4
0ð2Zþ ðb=aÞÞ að2Zþ ðb=aÞÞ

 !
q3

qx3

Ui

Ti

 !
; 8i 2 f1; 2; 3; 4g. (48)

For iA{5,6,7,8}, l4i ¼ 16a, and

Pi

Qi

 !
�

6oa2Zeqbeam
2

k4
0b3

k4
0 a

k4
0Z aðZþ ðb=aÞÞ

 !
q3

qx3

Ui

Ti

 !
8i 2 f5; 6; 7; 8g. (49)

It can be assumed that the terms {Pi}i ¼ 5,6,7,8 obtained from Eq. (49) are small compared than those
obtained from Eq. (48) and are therefore neglected. This means, among others, that the energy flow
resulting from the interference between progressive waves is neglected [16]. The validity of this assumption is

based on the fact that Zeqbeam51 and that, for iA{1,2,3,4} and jA{5,6,7,8}, k4
0q

3Ui=qx3 þ aq3Ti=qx3
�� �� and

k4
0q

3Uj=qx3 þ aq3Tj=qx3
�� �� are assumed to be of the same order. Finally, it will be assumed that the

evanescent waves, and hence the active power associated to their interference, are neglected far from the
singularities [16]. Therefore, the active power is simply expressed as a function of the remaining two

eigenvalues liðoÞ ¼ �ða1=4=2Þjbj=a. In this case the active and reactive components of structural power are
given by

Pi

Qi

 !
�

2o
ffiffiffi
a
p

k4
0b

2k4
0 2a

k4
0ð2Zþ ðb=aÞÞ að2Zþ ðb=aÞÞ

 !
q
qx

Ui

Ti

 !
; i ¼ 1; 2, (50)

where Ui and Ti are the solutions of diffusion Eq. (41). It is possible to decouple Pi and Qi in Eq. (50) if we

assume that the relation k4
0U ¼ aT holds for a beam (the equivalent relation k2

0U ¼ aT has already been

established for a bar as a consequence of Eqs. (21) and (24)). In the case of an uncoupled beam (a ¼ k4
0), the

relationU ¼ T 8x has been verified under the above assumptions by Ichchou et al. [10]. Hence, the active
power P can be expressed from the spatial derivative of either the potential energy density, or the kinetic
energy density:

P �
8o

ffiffiffi
a
p

b

qU

qx
; P �

8oa
ffiffiffi
a
p

k4
0b

qT

qx
. (51,52)
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To summarize, the potential energy density of the beam is obtained by solving the following energetic
boundary value problem, formulated from diffusion Eq. (41) and relationships (51) and (52), under the

conditions (1) a40, (2) b 6¼0, (3) Zeqbeam ¼ jb=aj51 and Z51:

q2Uðx;oÞ
qx2

� ðgdiff ðoÞÞ
2Uðx;oÞ ¼ 0; x 2�0; L½;

qUðx;oÞ
qx

				
x¼0

¼
bðoÞ

8o
ffiffiffiffiffiffiffiffiffiffi
aðoÞ

p Pð0;oÞ;
qUðx;oÞ

qx

				
x¼L

¼
bðoÞ

8o
ffiffiffiffiffiffiffiffiffiffi
aðoÞ

p PðL;oÞ:

8>>><
>>>:

(53)

Similarly the kinetic energy is obtained by solving the energetic boundary value problem

q2Tðx;oÞ
qx2

� ðgdiff ðoÞÞ
2Tðx;oÞ ¼ 0; x 2�0; L½;

qTðx;oÞ
qx

				
x¼0

¼
k0ðoÞ

4bðoÞ

8oaðoÞ
ffiffiffiffiffiffiffiffiffiffi
aðoÞ

p Pð0;oÞ;
qTðx;oÞ

qx

				
x¼L

¼
k0ðoÞ

4bðoÞ

8oaðoÞ
ffiffiffiffiffiffiffiffiffiffi
aðoÞ

p PðL;oÞ:

8>>><
>>>:

(54)

In the general case where aak2
0 (beam coupled with an auxiliary system), we observe that U 6¼T. In the case of

an uncoupled beam, we simply verify that the energetic problems formulated above are identical to the results

obtained in the literature [10]: in this case, g2diff � Z2o2=c2g, where cg represents the group velocity of the waves

propagating in the beam, cg ¼ 2ðo2E0I=rAÞ1=4; furthermore, qU=qx ¼ qT=qx � �ðZo=2c2gÞ � P 8x, and

U ¼ T8x.

3.3. Numerical results

The numerical solutions of energetic boundary value problems (53) and (54) are compared to the exact
energy densities, obtained by solving the exact displacement equation (31) and using Eqs. (35) and (36) to
derive the exact potential and kinetic energy of the coupled bar.

We consider a free–free elastic homogeneous Euler–Bernoulli beam. The characteristics of the beam are:
bending rigidity E0I ¼ 175Nm2, density r ¼ 7800 kg/m3, length L ¼ 1m, cross-sectional area A ¼ 10�4m2

and loss factor Z ¼ 5� 10�3. The beam is excited at x ¼ 0 by a harmonic force of amplitude F ¼ 100N. The
energetic boundary conditions of the system are Pð0;oÞ ¼ PinjðoÞ, where Pinj is the injected power calculated
from the exact displacement solution,

PinjðoÞ ¼ �1
2
Re ioFuð0;oÞ

 �

(55)

and P(L,o) ¼ 0. The auxiliary system is a homogenous structural fuzzy composed of elastic bars whose exact
geometrical parameters are assumed unknown and are described statistically (Fig. 13). The fuzzy couples to
the transverse displacement of the beam, and is identical to the one simulated in the case of a bar (Section 2.3),
therefore the boundary impedance Z is identical. At 103Hz and at 105Hz, the uncoupled beam contains
approximately three bending wavelengths and 33 bending wavelengths over its length, respectively.

The underlying assumptions of the diffusion model, (1) a40, (2) b 6¼0 and (3) Zeqbeam51, are first numerically
verified in this case of a fuzzy auxiliary system. The functions o 7!a=a0 and o7!Zeqbeam (equivalent damping) are
 x 

Fuzzy sub-
system k 

uk

Homogeneous beam

Fig. 13. Homogeneous beam coupled to a structural fuzzy.
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plotted in Fig. 14. According to Eq. (34) the equivalent damping of the beam Zeqbeam is formally identical to the
equivalent damping of the bar Zeqbar (see Fig. 9). The dissipation introduced by the fuzzy auxiliary system into
the beam is significant at frequencies above the fundamental mode of the fuzzy, O1=2p � 4� 103 Hz. The
function o 7!a=a0 is very similar to that found in the case of the bar (Fig. 9).

The potential energy and kinetic energy densities at position x ¼ L/2 are shown in Fig. 15 as a function of
frequency. The diffusion coefficient of the beam coupled with the fuzzy gdiff (Eq. (42)) is compared to the
diffusion coefficient of the uncoupled beam (Z ¼ 0) in Fig. 16. The exact energy values in Fig. 15 do not show
the resonance of antisymmetric beam modes at the observation point (x ¼ L/2) since according to Eqs. (35)
and (36), the corresponding value of the potential and kinetic energy is zero at this point. In contrast, the
solution of the diffusion equation shows peaks on resonance of the antisymmetric modes because the injected
power boundary condition Pð0;oÞ ¼ PinjðoÞ (derived from the exact displacement solution) has a maximum at
these frequencies. Similar to the case of a bar, the action of the fuzzy on the beam is apparent above the
fundamental frequency of the fuzzy. In this frequency range, the response of the system is considerably
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damped. This is also apparent on the diffusion coefficient gdiff (Fig. 11) which is significantly increased in the
frequency range [O1=2p, 10

5Hz], as compared to the uncoupled beam. The fuzzy enhances the diffusive
behavior of the system above the fundamental frequency of the fuzzy.

4. Conclusion

In this paper, the energetic behavior of a one-dimensional structure coupled with an auxiliary system
composed of resonant arbitrary subsystems has been formulated on the basis of a diffusion model. The kinetic
and potential energy densities are obtained by solving two energetic boundary-value problems whose solutions
are smooth exponential functions of the spatial coordinate along the system. In the context of energy
diffusion, the proposed model has the advantage of characterizing the coupled system by a single diffusion
coefficient. Solutions predicted by the diffusion model show that the potential and kinetic energy of the system
are not generally equal. In the two cases of auxiliary subsystems investigated (discrete oscillators and
continuous fuzzy subsystems), it has been shown that the local heterogeneity introduced by the auxiliary
system increases the effective diffusion coefficient of the global system.

Appendix A. Derivation of Eqs. (11) and (12)

The characteristic equation X 4 þ 4aX 2 � 4b2
¼ 0 of Eq. (10), has solutions such that

X 2 ¼ �2a� 2a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

b

a

� �2
s

. (A.1)

Under the small damping condition (3) Zeqbar ¼ jb=aj51,

X 2 � �2a� 2a 1þ
1

2

b

a

� �2
 !

, (A.2)

or

X 2

 �

¼
b2

a
;�4a

� �
. (A.3)



ARTICLE IN PRESS
J.-M. Mencik, A. Berry / Journal of Sound and Vibration 294 (2006) 894–915912
Finally, the roots of the characteristic polynomial are

Xf g ¼
bffiffiffi
a
p ;�

bffiffiffi
a
p ; 2i

ffiffiffi
a
p

;�2i
ffiffiffi
a
p

� �
. (A.4)

Thus, the general solution F of Eq. (10) can be expressed as the sum of two functions x7!G and x7!H,
solutions of second-order differential equations with roots Xf g ¼ b=

ffiffiffi
a
p

;�b=
ffiffiffi
a
p
 �

and Xf g ¼ 2i
ffiffiffi
a
p

;�2i
ffiffiffi
a
p
 �

,
respectively:

q2G
qx2
� a

b

a

� �2

G ¼ 0 in�0; L½, (A.5)

q2H
qx2
þ 4aH ¼ 0 in�0; L½. (A.6)
Appendix B. Derivation and solution of Eq. (37)

The potential energy density U and the kinetic energy density T is a beam are given by

U ¼
E0I

4

q2u

qx2

q2u

qx2
; T ¼

E0Ik4
0

4
uu, (B.1,B.2)

where k0
2 ¼ o2rA=E0I . Using Eqs. (B.1), (B.2) and (31), the fourth-order space derivatives of U and T can be

written

q4U
qx4
¼ 2aU þ 6

ða2 þ b2
Þ

k4
0

T þ E0I ðaþ ibÞ
qu

qx

q3u

qx3
þ ðaþ ibÞ

q3u

qx3

qu

qx

 !
, (B.3)

q4T
qx4
¼ 2aT þ 6k4

0U þ E0Ik4
0

q3u

qx3

qu

qx
þ

qu

qx

q3u
qx3

 !
. (B.4)

It is possible to eliminate the displacement u in Eqs. (B.3) and (B.4) by differentiating again four times with
respect to x. Finally, after some algebra,

q8

qx8

U

T

� �
�

4a 12ða2 þ b2
Þ=k4

0

12k4
0 4a

 !
q4

qx4

U

T

� �
þ

4ð2a2 þ b2
Þ �8aða2 þ b2

Þ=k4
0

�8ak4
0 4ð2a2 þ b2

Þ

 !
U

T

� �
¼

0

0

� �
: (B.5)

We seek solutions of the form

U

T

� �
¼

A

B

� �
elx. (B.6)

The corresponding characteristic equation is

ðl8 � 4al4 þ 4ð2a2 þ b2
ÞÞ
2
� ða2 þ b2

Þð12l4 þ 8aÞ2 ¼ 0 (B.7)

or alternatively,

l8 � ð4aþ 12
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
Þl4 þ 4ð2a2 þ b2

Þ � 8a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p� 
� l8 � ð4a� 12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
Þl4 þ 4ð2a2 þ b2

Þ þ 8a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p� 
¼ 0. ðB:8Þ
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Under the conditions a40 and jb=aj51, the solutions take the simple form

lif gi ¼

ffiffiffi
a4
p

2

bj j

a
;�

ffiffiffi
a4
p

2

bj j

a
; i

ffiffiffi
a4
p

2

bj j

a
;�i

ffiffiffi
a4
p

2

bj j

a
;

�
2
ffiffiffi
a4
p

;�2
ffiffiffi
a4
p

; 2i
ffiffiffi
a4
p

;�2i
ffiffiffi
a4
p

,

ð1þ iÞ
ffiffiffi
a4
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

bj j

a

4

r
;�ð1þ iÞ

ffiffiffi
a4
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

bj j

a

4

r
; ð1� iÞ

ffiffiffi
a4
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

bj j

a

4

r
;�ð1� iÞ

ffiffiffi
a4
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

bj j

a

4

r
,

ð1þ iÞ
ffiffiffi
a4
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

bj j

a

4

r
;�ð1þ iÞ

ffiffiffi
a4
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

bj j

a

4

r
; ð1� iÞ

ffiffiffi
a4
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

bj j

a

4

r
;�ð1� iÞ

ffiffiffi
a4
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

bj j

a

4

r )
. ðB:9Þ

Appendix C. Derivation of Eq. (46)

Active power P is defined as [14]

P ¼ PV þ PM , (C.1)

where PV represents the active power transmitted due to the shearing force,

PV ¼
oE0I

4
i �

q3u
qx3

uþ
q3u

qx3
u

 !
þ Z

q3u
qx3

uþ
q3u
qx3

u

 ! !
(C.2)

and PM represents the active power transmitted due to the bending moment,

PM ¼
oE0I

4
i

q2u
qx2

qu

qx
�

q2u

qx2

qu

qx

 !
� Z

q2u

qx2

qu

qx
þ

q2u

qx2

qu

qx

 ! !
. (C.3)

Similarly, reactive power Q is defined by [14]

Q ¼ QV þQM , (C.4)

where QV represents the reactive power due to the shearing force,

QV ¼
oE0I

4
�

q3u

qx3
uþ

q3u
qx3

u

 !
þ iZ �

q3u
qx3

uþ
q3u
qx3

u

 ! !
(C.5)

and QM represents the reactive power due to the bending moment,

QM ¼
oE0I

4

q2u

qx2

qu

qx
þ

q2u
qx2

qu

qx

 !
þ iZ

q2u
qx2

qu

qx
�

q2u

qx2

qu

qx

 ! !
. (C.6)

Combining Eqs. (C.2), (C.3), (C.5) and (C.6) results in

oE0I

4

q3u

qx3
uþ

q3u
qx3

u

 !
¼

ZPV �QV

1þ Z2
, (C.7)

oE0I

4
�
q3u
qx3

uþ
q3u

qx3
u

 !
¼

ZQV þ PV

ið1þ Z2Þ
, (C.8)

oE0I

4

q2u
qx2

qu

qx
þ

q2u
qx2

qu

qx

 !
¼ �

ZPM �QM

1þ Z2
, (C.9)

oE0I

4

q2u

qx2

qu

qx
�

q2u
qx2

qu

qx

 !
¼

ZQM þ PM

ið1þ Z2Þ
. (C.10)
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Using the definition of kinetic and potential energy densities (B.1) and (B.2) and Eq. (31), it can be shown
that the following space derivatives of U and T can be written:

q3U
qx3
¼

1

oð1þ Z2Þ
3aðZPV �QV Þ þ 3bðZQV þ PV Þ � aðZPM �QMÞ � bðZQM þ PMÞ
� �

q3T
qx3
¼

k4
0

oð1þ Z2Þ
ðZPV �QV Þ � 3ðZPM �QMÞ
� �

q7U
qx7
¼

2

oð1þ Z2Þ
ð14a2 þ 7b2

ÞðZPV �QV Þ þ 7abðZQV þ PV Þ
�

�ð18a2 þ 17b2
ÞðZPM �QM Þ � abðZQM þ PMÞ

�
q7T
qx7
¼

2k4
0

oð1þ Z2Þ
18aðZPV �QV Þ þ 17bðZQV þ PV Þ � 14aðZPM �QMÞ � 7bðZQM þ PM Þ
� �

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

(C.11)

The inversion of (C.11) gives:

ðZPV �QV Þ ¼ �
oð1þ Z2Þ

8k4
0b

2
�3k4

0

q7U

qx7
� 3a

q7T

qx7
þ 48ak4

0

q3U

qx3
þ ð48a2 þ 34b2

Þ
q3T

qx3

� �

ðZQV þ PV Þ ¼
oð1þ Z2Þ

8k4
0b3

�4ak4
0

q7U
qx7
� ð4a2 þ b2

Þ
q7T
qx7

�

þð64a2k4
0 þ 14b2k4

0Þ
q3U

qx3
þ ð64a3 þ 50ab2

Þ
q3T

qx3

�

ðZPM �QMÞ ¼ �
oð1þ Z2Þ

8k4
0b

2
�k4

0

q7U
qx7
� a

q7T

qx7
þ 16ak4

0

q3U

qx3
þ ð16a2 þ 14b2

Þ
q3T

qx3

� �

ðZQM þ PM Þ ¼
oð1þ Z2Þ

8k4
0b

3
�4ak4

0

q7U
qx7
� ð4a2 þ 3b2

Þ
q7T
qx7

�

þð64a2k4
0 þ 34b2k4

0Þ
q3U
qx3
þ ð64a3 þ 62ab2

Þ
q3T
qx3

�

8>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>:

(C.12)

Finally, the active and reactive powers are expressed according to Eqs. (C.1)–(C.6):

P ¼
o

2k4
0b3
�k4

0ð2a� bZÞ
q7U

qx7
� ð2a2 þ b2

� abZÞ
q7T

qx7

�

þ4k4
0ð8a2 þ 3b2

� 4abZÞ
q3U

qx3
þ 4ð8a3 þ 7ab2

� 4a2bZ� 3b3ZÞ
q3T
qx3

�
ðC:13Þ

and

Q ¼
o

2k4
0b

3
�k4

0ð2aZþ bÞ
q7U
qx7
� ð2a2Zþ b2Zþ abÞ

q7T
qx7

�

þ4k4
0ð8a2Zþ 3b2Zþ 4abÞ

q3U
qx3
þ 4ð8a3Zþ 7ab2Zþ 4a2bþ 3b3

Þ
q3T

qx3

�
. ðC:14Þ
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These two equations are written in matrix form

P

Q

 !
¼

o

2k4
0b3

�a
k4
0ð2� ðb=aÞZÞ að2þ ðb=aÞ2 � ðb=aÞZÞ

k4
0ð2Zþ ðb=aÞÞ að2Zþ ðb=aÞ2Zþ ðb=aÞÞ

0
@

1
A q7

qx7

U

T

 !0
@ þ 4a2

�
k4
0ð8þ 3ðb=aÞ2 � 4ðb=aÞZÞ að8þ 7ðb=aÞ2 � 4ðb=aÞZ� 3ðb=aÞ3ZÞ

k4
0ð8Zþ 3ðb=aÞ2Zþ 4ðb=aÞÞ að8Zþ 7ðb=aÞ2Zþ 4ðb=aÞ þ 3ðb=aÞ3Þ

0
@

1
A q3

qx3

U

T

 !1A. ðC:15Þ
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